Optimization on Airfoil of Vertical Axis Wind Turbine Based on CST Parameterization and NSGA-II Aigorithm

نویسندگان

  • Changping Liang
  • Sen Zhang
  • Baofeng Chen
  • Xiangqian Wang
  • Qinglong Guo
چکیده

Optimizing the NACA0015 airfoil which is widely applied in small-scale vertical axis wind turbine to make it has a better aerodynamic performance. In the optimization process, using CST parameterization method to perturb the airfoil geometry, the thickness and camber of the airfoil are selected as the constraint, and the value of the maximum tangential force coefficient is chosen as the objective function, the genetic algorithm based on non-dominated sorting (NSGA-II)is selected as an optimization method, calculates the aerodynamic performance of the airfoil by applying the approach of combining XFOIL program and Viterna-Corrigan post-stall mode ,and establishes the optimizing process by the optimization software modefrontier for NACA0015 airfoil’s muti-point optimization, validate the airfoil’s performance with CFD finally. The result illustrates that, by comparing with the NACA0015 airfoil, the optimized airfoil’s lift to drag ratio is improved over a wide range of attack angles, the stall performance is more gentle. The maximum lift coefficient, the maximum lift-drag ratio and the maximum tangential force coefficient are increased by 7.5%,9 and 8.87%, respectively. The optimized airfoil has a wide variable condition performance, more suitable for the operating conditions of a vertical axis wind turbine. Finally, predict the rotor efficiency with optimized airfoil and NACA0015 airfoil for different tip speed ratios and different solidities with multiple streamtube model, the result shows the rotor with optimized airfoil has a higher efficiency. Keyword: vertical axis wind turbine; CST parameterization; NSGA-II; airfoil; optimization; multiple streamtube model

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Airfoil Design for Vertical Axis Wind Turbine Operating at Variable Tip Speed Ratios

A new airfoil design method for H type vertical axis wind turbine is introduced in the present study. A novel indicator is defined to evaluate vertical axis wind turbine aerodynamic performance at variable tip speed ratios and selected as the airfoil design objective. A mathematic model describing the relationship between airfoil design variables and objective is presented for direct airfoil de...

متن کامل

Multi Objective Optimization of Transonic Airfoil Using Cst Methodology with General and Evolved Supercritical Class Function

CST method is a powerful parameterization method because of its simplicity, robustness, and its ability to be generalized into various possible shapes of aerodynamic bodies. The geometry from CST itself is mainly determined by the formula of class and shape function. Application of CST to transonic airfoil optimization is still rare and more studies are needed. This work studies the application...

متن کامل

Aerodynamic Characteristics of Asymmetric Airfoils Blade Small Vertical Axis Wind Turbines

In this paper, using sliding mesh model, the numerical simulation of small vertical axis wind turbine aerodynamic performance was studied with FLUENT software. Got change rule of four same thickness and different camber‘s NACA series asymmetrical airfoil moment coefficient of the wind turbine and wind power machine with the tip speed ratio. Wind turbine benchmark blade around the flow field was...

متن کامل

Numerical Analysis of the Performance of the DU91-W2-250 Airfoil for Straight-Bladed Vertical-Axis Wind Turbine Application

This paper presents a numerical analysis of the performance of a three-bladed Darrieus vertical-axis wind turbine based on the DU91-W2-250 airfoil. A complete campaign of 2-D simulations, performed for several values of tip speed ratio and based on RANS unsteady calculations, has been performed to obtain the rotor torque and power curves. Rotor performances have been compared with the results o...

متن کامل

Aerodynamic Optimal Design of Wind Turbine Blades using Genetic Algorithm

Wind power has been widely considered and utilized in recent years as one of the most promising renewable energy sources. In the current research study, aerodynamic analysis of the upwind three-bladed horizontal axis turbine is carried out using blade element momentum theory (BEM), and a genetic algorithm (GA) is applied as an optimization method. Output power generation is considered as an obj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016